multimedia, science

Night of the Planet Hunter, Youtubed

Last week, someone asked if some of my work from a few years ago could have been published to Youtube. Great question. Way back in 2008/2009, if you were working with an organization that was interested in experimenting outside their traditional media format—say, a magazine publishing an audio slideshow—you’d sometimes find that despite the interest, there was a more fundamental question: what, exactly, to do with the resulting story. There might be technical constraints (which was the case with the story below), or certain editorial imperatives (self-hosted video; wanting people to visit your site as opposed to making something embeddable, etc) would make things complicated.

In the case of this 2008 audio slideshow about searching for exoplanets (the pre-Kepler era), my editor said I might as well publish it to my site since they couldn’t really publish the Flash-based output from Soundslides (speaking of which, ugh, Flash). Since then, some of these things have loosened up—see, for example, the Wired video I pitched in on with an early draft script, that went straight to Youtube. SoundSlides itself developed a convert-to-Youtube-friendly-format option online, which is what I used here.

Anyway, here we finally have an easily embeddable version. And below that, the brief write-up that went with it.

California Goes Planet Hunting

Until 1995, exoplanets—planets orbiting sun-like stars—were more figment than fact, the stuff of sci-fi novels. But in 1995, a Swiss group discovered the first known example, called 51 Pegasi b, and since then, astronomers have documented more than 300 exoplanets. Of those, nearly half have been discovered by the team led by Cal astronomy professor Geoff Marcy, who directs the Center for Integrative Planetary Science.

California recently checked in with Professor Marcy to find out more about his work. The results: an audio slideshow of a night searching for planets with Marcy (above) and a Q & A with Marcy about his work (below), both produced by Timothy Lesle.

California: How do you describe what you do?

Geoff Marcy: I think every young person, at some point, looks up at the night sky and wonders if those “suns” harbor any planets, especially earth-like planets. We wonder, “Is anyone out there?” My research has been to search the nearest 1000 stars for planetary systems, with the hope of finding possible oases for life. My group works day and night using the world’s largest optical telescope, the Keck telescope. NASA and the University of California provide the telescope time. Three NASA space-borne telescopes hold real promise for the future. Kepler will launch in 2009 and is designed to detect Earth-like planets, which have never been found. It will search for stars that dim repeatedly, as a sign that earths are crossing in front of the star, blocking starlight.

How did you get into planet hunting?

When I finished my Ph.D., I didn’t have any good ideas about what to do next. I attempted to continue my research, measuring the magnetic fields on Sun-like stars. But such measurements are very difficult, and I could tell it wasn’t going well. I felt lost and incompetent. Resigned to mediocrity, I decided I should do research that captured my imagination, no matter how unlikely it was to succeed. For the next 10 years my collaborator, Paul Butler, and I tried to discover planets, without success. I was quite distressed the entire time, but didn’t feel that I could quit. When we found our first planets, most people didn’t believe us. A Canadian astronomer and an American astronomer promoted alternative interpretations, saying we were fooling ourselves and tricking others. But we persisted. I was so depressed when people didn’t believe me that I had to get away from astronomy. I took up tennis, playing every day. I still play tennis every day.

If a star looks small, a planet must be impossible to see.

Detecting a planet near a star is like trying to see a speck of dust next to a flashlight, located 1000 miles away. We find planets by using a trick. The stars are yanked by the gravitational pull of the planet. We watch the stars to see if they are moving around in circles or stationary. If they move, we know a planet is there. Massive planets yank more strongly on the star, allowing us to measure the planet’s mass. And the time it takes for the star to move in a circle is the same time it takes the planet to orbit the star. So we learn quantitative information about the planet, even though we don’t see it at all.

My team has discovered extraordinary and bizarre new worlds. Some orbit so close to their star that they are just skimming above the star’s surface, [which is] blow-torching the planet to thousands of degrees. Others travel along stretched-out, elongated orbits, with the star flinging the planet far, only to let it plummet back. The circular orbit of the Earth is a fluke among planets in the universe.

Will we be visiting them one day?

Some day we humans will devise propulsion systems that allow us to send spacecraft to the stars. At first the payloads will be sensitive cameras, sending back detailed pictures of another world, with its oceans, lakes, rivers, and waterfalls. Perhaps we’ll even see the life forms living there. Later, we will travel to the stars ourselves, to visit those worlds and live there, like the pioneers in the Old West. Ultimately, our travels to other worlds will help preserve our species, protecting us against catastrophe on any one planet, including our home Earth.

Tim Lesle also wrote about a serendipitous supernova study in the November/December 2008 issue of California.

Standard

Leave a Reply

Your email address will not be published. Required fields are marked *